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Variational Analysis of Ridged Waveguide
Modes

YOZO UTSUMI, MEMBER, IEEE

,4bstraet —Brief expressions of eigenvahre problems, nornraf modes, and

electric-field profiles for afl odd TE and TM modes of ridged wavegnides,

and the guide wavelength and characteristic impedance for the TE lo

dominant mode, are presented in this paper.

In this anafysis, the computation time can be reduced by getting simple

approximated v~ation~ expressions for eigenvafue equations by using a
triaf function which satisfies the right-angled edge condition of a ridge.

These theoretical results are in good agreement with the experimental

resnlts and the several references employed.

I. INTRODUCTION

A PPLICATIONS of ridged waveguides have been of

wide-ranging use in microwave devices and circuits,

and research on them has been continued steadily. In 1947,

Cohn [1] obtained ridged waveguide eigenvalues of TE~O

modes by using the transverse resonance method in a cross

section of a ridged waveguide. Hopfcr [2] and Pyle [3]

published further improved approximated analyses for ei-

genvalue problems of TE~O modes. In 1962, Getsinger [4]

first published approximated field equations of the TEIO

mode. Getsinger assumed the TEM mode under the gap

and made the matching condition only in electric fields. In

1971, Montgomery [5] published the complete solutions of

ridged waveguide eigenvalue problems for all TE and TM

modes. In this method, an eigenvalue equation was given in

a matrix form, and an integral eigenvalue equation was

subsequently solved numerically by application of the

Ritz-Galerkin method. In a recent paper, an approximated

closed-form expression for the eigenvalue problem of the

TEIO mode was published for concentrating on the reduc-

tion of computation time [6]. And also for the eigenvalue

problem of the finline, Schmidt and Itoh published the

spectrum-domain analysis [7], where the field at the top of

the fin was assumed as the near field of the 0° angle

conductor edge.

On the other hand, a planar circuit mounted in a wave-

guide (PCMW) was proposed by Konishi [8] as an effective

application of a ridged waveguide, and a 12-GHz band

low-noise down converter with a PCMW was developed

[9], [10] for satellite broadcasting by the NHK Technical

Research Laboratories. In the theoretical design of this

down converter, it becomes important to determine the

equivalent circuits of several discontinuities in a ridged

waveguide. Therefore, a theoretical analysis with short

computation time for eigenvalue problems and normal
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mode expressions including all TE and TM modes of a

ridged waveguide becomes important. It is impossible to

meet this requirement by using theoretical methods found

in [1]–[4] and [6]. Althouglh Montgomery’s method [5] is

powerful and can meet this requirement in the main, it

cannot be regarded as an economical method in view of

computation time.

In this present paper, the near field of the edge of a ridge

is expressed by a known distribution function as described

in [7] in the case of a finline. In the case of a ridged

waveguide, as the thickness of the ridge is finite, the ridge

edge has a right angle different from the 0° angle of the

finline’s infinitely thin edge. And it becomes complicated

to use the spectrum-domain analysis of [7], because two

different spectrum domains exist on both sides of the edge.

In this paper, in selecting a trial function which satisfies

the edge condition of a ridge, the variational method [11] is

used in real space (x, y pllane). By using the simple ap-

proximated eigenvalue equation, this analysis has met the

requirement, described above, of short computation time.

This paper also gives the normal mode expression and the

electric-field profile of each mode, the guide wavelength,

and the characteristic impedance for the dominant mode.

Finally, by comparing these theoretical results with experi-

mental ones and others [2], [4], [5], the correctness of this

analysis is confirmed.

II. WAVE EQUATIONS AND BOUNDARY CONDITIONS

The cross-seetional shape of the ridged waveguide with

the coordinates is illustrated in Fig. 1, where 2t means the

thickness of the ridge, s the gap in the ridge, 2a x b

waveguide dimensions, I the region of O < xs t,and II the

region of t < x < a. All ridged waveguide modes can be

classified into TE or TM modes, and these fields are

derivable from two kinds of scalar potentials ijP,, and

~Pj(x, Y, z) = O~i(x, Y)”gP,(z). @P1is a function of only the
transverse coordinate. This potential function @Pisatisfies a

wave equation

V;~p, + k#PP, = O (1)

where

{

h: o~i indicates magnetic scalar potential
p=

e: @eiindicates electric scalar potential

“{

1: @Pl indicates scalar potential for region I

Z= 2: @P2indicates scalar potential for region II

k;=k; –~=.
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Fig. 1. Cross-sectionaf shape of a ridged wavegtide with coordinates.

In (l), v?= 82/dx2 + d2/dy2, k= is a ridged wave-

guide eigenvalue, ~ is a propagation constant in the z

direction, and k. the propagation constant in free space.

Two scalar potential functions are related to the electric

and magnetic ~ields of TE and TM modes by [12]:

for TE modes

Et, =iz X Vtrjh, (X, y)

H,, = –B/(@Po)”v,+hz(x, ~)

Hzi=jiz(B2 –~~)/(@Po)”@hl( x,Y)

for TM modes

E,t = –~/(Q&o)-V,@e, (x, Y)

Ezt=jiz(B2 –k~)/(mo)”$,~(x, y)

H,, = v,+,, (x, y)xiz

(2a)

(2b)

where gP, ( z ) is omitted, and iz is a unit vector of the z
direction, j = n, e. and PO are the permittivity and

permeability of free space, respectively, Q is the angular

frequency, the suffix t means the transverse direction

(x, y), and v,= ix(a/ax)+i,(a/ay).

Considering the odd TE and TM modes whose symme-

try plane has been assumed as the y coordinate axis

(.x = O) in this analysis, the x = O plane can be regarded as

a magnetic wall. In the case of the even modes, a similar

analysis can be accomplished, regarding the x = O plane as

an electric wall. Therefore, in the following discussion, the

x = O plane is regarded as a magnetic wall and only a half

of the ridged waveguide (O < x < a) is considered.

In Fig. 1, it is necessary to satisfy the boundary condi-

tions on the conductor surface and the magnetic wall for

both TE and TM modes:

for TE modes

&=o
an ‘

on conductor surface

@h,=o, on magnetic wall (3a)

for TM modes

@e,=0> on conductor surface I

a+e, = o

6% ‘
on magnetic wall (3b)

where n = inn, the normal vector on each surface or wall as

shown in Fig. 2.
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Fig. 2. Contour pass C, for integral representations in (6).

III. VARIATIONAL PRINCIPLE FOR EIGENVALUE

PROBLEMS

A. Stationary Formula

We have the following variational expressions for TE

modes:

a+hz

~ (@hi ”v?@hc)S, + ,$, (~h’- ~)C,

k;=_ 1=1

2
(4a)

i=]

where the constraint conditions for the trial eigenfunction

~h, are given by

a$h, _ o

6’n ‘
on 12, Id, 15, and Ie

a+hl _

(4b)

an *=&(Y), on IJ

&(Y)=o> on 15
(4C)

T(Y)=O, on Iy and 15

where the trial distribution function &(y) and q(y) are

proportional to the y and z components of the electric

fields on 13 and 15, respectively.

For TM modes

where the constraint conditions for the trial eigenfunction

o,, are given by

+,z = 0, on 12, lb, 1~, and 16 (5b)

@el=@e2 =71(Y)> on 13 (5C)

n(Y)=o, on 15.

The relation between q(y) and $(y) is described later for

the TM modes. The integral (A)sl for the cross-sectional

area S, and the contour integral (A)=, for the contour pass
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C, are defined as The left-hand side of (9) is also stationary for ~.,.

(A)~l=~s~.dx.dy

(A)., = ~b~aA. dx.dy

(A)c, =~’Alx.o”dy +~lY.s. dx
o

/+ OAIX=,. dy + /1‘A ~=o.dx

=J~”d’+l:”d’:JA”d’+ lA”d’
1 3 4

(A)c2= f&=,”dy+ ~b4x=, ”dy
o s

+ j=AIY=~.dx+~OAIX=..dy + ~’AIY=o”dx

=-i:”d’-l;”:-i: ”dl a
(6)

In Appendix I, we have proved that if @ki and +.,

minimize (4a) and (5a) with the constraint conditions (4b)

and (4c), or (5b) and (5c), respectively, then they are the

correct solutions of (1) with proper boundary conditions.

B. Trial Eigenfunction Including Eigenvalues

Equation (4a) can be transformed into

F= left-hand side of (7a). (7b)

It can be proven easily that F given by (7b) IS also

stationary for Oh, from the stationary formula of (4a).

Next, we consider the cases of using the trial eigenfunc-

tion which includes the eigenvalue kT in order to obtain

the simplified stationary formula for the eigenvalue prob-

lem. When the trial eigenfunction is a function of the

eigenvalue k~, the closed-form expression of k~ cannot be

obtained from (7a). In such a case, k~ is still stationary.

We will prove it as follows.

When the trial eigenfunction is a function of the eigen-

value k~ and a parameter Pz described as ~h,(kT, PZ),

taking the first variations of k; and pz in (7a), and using

the stationary character of (7b), the following relation is

derived in Appendix II as

where a parameter pz is described in Appendix II.

Since the first variation of k$ vanishes, the value of k#

derived from (7a) is stationary. A similar expression for

TM modes can be derived from (5a) as

IV. STATIONARY FORMULA FOR RIDGED

WAVEGUIDE

Applying the TE constraint conditions on 12 and Id that

dOhl/ dn = O and the TE boundary condition on 11 that

;Yt;~~ we find the trial eigenfunction in region I (O< x <

where

m: integer

Applying the TE constraint conditions on lc that d@hz/dn

= O, we also find the trial eigenfunction in region II

(t< x <a) that
m

@h’2= ~ bh.” cosllY2.(a – x)” Coshny (11)
~=()

where

k2.=~, n: integer

-m72. – k2. – kT .

Similarly for TM modes, the trial eigenfunction o,, can be

selected as

%1= 2 aem” coshyl~x. sink ~~y (12)
~=1

% = ~ b,.” sinhyz.(a – X)C sink Z.Y. (13)
~=1

And then we must consider the remaining constraints: the

constraint given by (4b) on only 15 and the constraint given

by (4c) on 13 for TE modes. Therefore, the unknown

coefficients a~~ and bh. should be decided to satisfy these

constraint conditions. The unknown coefficients a ~~ and

be. should be decided to satisfy the remaining constraints

for TM modes: the constraint given by (5b) on only 15 and

the constraint given by (5c) on 13.

Substituting (10) and (11), or (12) and (13) into (4c) or

(5c), and multiplying both mlembers by cos kl~ y or cos k2. y

for TE modes, by sin kl~ y or sin k2n y for TM modes, and

then integrating from y = O to s or b, the unknown coeffi-

cients are obtained by the orthogonal condition

cm (t” c~sklmy)i,
a~~=~.

Ylm” Coshylmt

b =_fi (’$”co5k2i2Y)13
hn b Y2.,. sinhy2nh

1 (q” sinklmy)f,
a =;. —em Cosll y~mt

b = ~ (n. Sinkzny)[,
en b“ sinh y2~h

(14)
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where

h=a–t

6.=1, 6m(m>l)=6n(n>l) =2.

Next, we should select the appropriate trial distribution

function $(y) which is proportional to the y component of

the electric field on 13. In the case of a ridged waveguide,

as the edge of the ridge has a right angle, the y component

of an electric field near the edge is approximately propor-

tional to A y – @/3J [13], where A y means the distance

between an edge and an observational point. Therefore, by

using an arbitrary constant C~, &(y) is given by

/

~ cq. coskqy. (s’-y’)-(1’3), Iyl<’s
‘$(Y)= q=o

(15)

where

~ .~
q~’

q: integer.

For TM modes, the trial distribution function q(y) and

4(y) which are proportional to the z and y components of
the electric field on Is can exhibit the relations q ~ @,l and

& a ih$,,/~y by using (2b). And the following relation can

be obtained:

(16)

By using the partial integral

(17)

By substituting (16) and the relation q(s)= q(0)= O, the

following relations can be obtained:

(q. sinkl~ y),,=& “($. coskl~y)l, (18a)

(n” sink’. y),,= ~ “((” cosk’. y),, (18b)

where K is an arbitrary constant.

When using (10), (11), and (14), and the constraint

conditions given by (4b) and (4c), (7a) becomes

(+hl”~)l, - ($h’”t)~, = O. (19)

Similarly for TM modes, the following relation is obtained:

(20)

The Fourier transforms of the trial distribution function

(i(y) in wio:s I andJI are defined as ~~ and t., respec-
tively, where Cm and <~ are given in Appendix III.

Substituting (10)-(14), (18), and (A16) into (19) and

(20), stationary eigenvalue formulas can be obtained

for TE modes

(21a)

Ph = left-hand side of (21a)

(21b)

for TM modes

(22a)

P,= left-hand side of (22a)

(22b)

where P~ and P, are stationary for ~, because they are

derived from the left-hand side of (7a) and (9), which are

stationary for @hi and @,i, respectively.

Considering only the comparative lower order modes in

the y coordinzite, we retain the first three terms (i.e., q <2)

in (A16) for $~ and ~~. Since Ph given by (21b) is sta-

tionary for ~, for the TE modes, letting CO= 1, Cl and C2

are obtained from (23a) by using the Raylei@–Ritz proce-

dure [14]. Similarly, for the TM modes, letting Cl= 1, Co

and Cz are obtained from (23b)

for TE modes

8Ph/dCl = o, aph/dc2 = o (23a)

for TM modes

aPe/aco = o, aPe/ac2 = o. (23b)

V. NUMERICAL RESULTS OF EIGENVALUE PROBLEMS

Montgomery defined two kinds of eigenmodes for the

double-ridged waveguide [5], i.e., Hybrid modes and Trough

modes. The Hybrid mode is considered to be a basic ridged

waveguide mode and the Trough mode is a rectangular

waveguide-type mode which exists in the trough region,

region II. These definitions are also used in this present

paper. TE and TM modes are further classified into TE

Hybrid, TE Trough, TM Hybrid, and TM Trough modes.

The eigenvalues of the transverse propagation constant

k.( = ~~) can be obtained from (21), (22), and (23)

by numerical calculation using the bisection method. In the

actual computations of (21) and (22), the summations over

m and n are terminated when m = 20 and n = 30 with

enough accuracy where examining the convergence of the-

variation of the eigenvalue as a function of m and n. For

example, by comparing the eigenvalues of this proposed

analysis with those of [5] for the double-ridged waveguide

shown in Table II, both eigenvalues exhibit a good agree-

ment within an error margin less than 0.6 percent for

m = 20 and n = 30, and less than 0.4 percent for m = 50
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TABLE I

ODD-MODE EIGENVALUE K~ OF SINGLE-RIDGED WAVEGUIDE

AND CORRESPONDENT EIGENMODE OF RECTANGULAR WAVEGUIDE

(USING WRJ-120 WAVEGUIDE)

rectangular wavegulde (2a Yb) r[dged wavegulde (2axb,2t,s)
a=b=9 5(mm)

mode
a=b=9 5, 1=0 15, s=t 7(mm)

tran-
rectangular

e,genvalue elgenvalue wavegulde
mode name Sltlon mode name

k~(radfmm)
(bxh)

k, lrad /mm) elgenvalue
k~(rad /mm)

O 1653 TE,,, . TE,, Hybr,d o 0930

0 3697 TE,, --+ TEM Trough O 3332 0 3307

El
O 5962 TE3, ---+ TEN Hybrid O 5265

0 6817 TE,z - TE.o Trough O 6654 0 6614

0 6817

0 8267 ;::: x ;:2;;:;, ::::: ~ o 7490

0 8267 T E,, - TE?, Trough O 7456 0 7418

0 8267

::; x :;2::;;,

O 8298

0 8904 0 9427 0 9429

and n = 200. The first eleven eigenvalues are obtained for

the single-ridged waveguide using a WRJ-120 waveguide

(2a =19.0 mm, ~ = 9.5 mm) and 2t = 0.3 mm, s =1.7 mm,

which is the typical example of a PCMW in the 12-GHz-

bmid low-noise down cohverter [9], [1~ for ;atellite broad-

casting. These results are shown in Table I. In this table, it

is evident that eigenvalues of Trough modes are ahnost

equal to those of a rectangular waveguide whose dimen-

sions are b x h. All eigenvalues of a ridged waveguide

originate from those of a rectangular waveguide with di-

mensions 2a x b as shown in Table I. When the value of s

increases to 9.5 g-m, that is, the limit at which the ridge

vanishes, eigenvalues of a ridged waveguide are astringent

to those of a rectangular waveguide. These correspon-

dences are shown in Fig. 3.

For the ‘first four modes shown in Table I, the relation

between the normalized eigenvalue, k~a and s/b in the

case of a = b with several values of the parameter t/a is

shown in Fig. 3. In the Hybrid mode, the energy is con-

centrated in the gap of the ridge. Therefore, by making the

value of s/b larger, the value of k~a becomes larger

because of the smoothing in the curvature of the magnetic

flux near the gap. In the Trough mode for a small gap, the

main part of its energy does not exist under the gap. By

varying the values of s/b and t/a, the value of k=a is

constant with respect to s/b when s/b <0.4, and this

confirms that k~a is related to the b X h dimensions of the

rectangular waveguide only.

As the value of s/b increases to one, the limit value of

k~a is astringent to the eigenvalue of the rectangular

waveguide whose dimensions are 2a x b, as described

above. These transitions are explained later in Fig. 4.

For the TEIO Hybrid mode, by using Getsinger’s ap-

proximated field distributions [4], the eigenvalues can be

calculated by the variational method. These results plotted

by dots in Fig. 3 are in good agreement with the theoretical

values described in this paper.

t/a=o.4

t/a=o,4

t/a=O 2

=0,1
=0 05
=0 0158

t/a=0,2

=0 t
=0 05
=0,0158

t/a=o.2
=!3 1
=0,05
=0 4
=0 ot58

t/a=O 0158
=0.05
=0.1
=0 2
=0 4

/

TE,oHybrld

/

?.,

. : Theoretical values obtained with
var[atlonal method by uwng
Gets fnger’s field dlstnbuhons [4]
for TE,o Hybrsd mode (t/a=O 0158)

00, t 02030,405060,7080 910

Sib

Fig. 3. Relation between normalized eigenvalue k~a versus s/b
t/a (with a = b).

TABLE II

115

and

ODD-MODE EIGENVALUE K~ or DOUBLE-RIDGED WAVEGUIDE—.

COMPARISON BETWEEN THIS IPROPOSED ANALYSIS AND TILE ONE

FOUND IN [5].

k~(rad /mm) k,(rad /mm)
mode name thts Present

Walysls reference [5]

TE,o Hybr,d O 1438 0 1437

TE ,,, Trough o 3155 0 3166

TEx Trough O 6215 0 6190

TEw Hvbrld O 6707 0 6712
1

TE ,, Trough O 6971 0 6973

The eigenvalues of the double-ridged waveguide whose

dimensions are taken from [5] are obtained by using this

proposed analysis. The results are compared in Table II.
Both eigenvalues exhibit a good agreement within an error

margin of 0.07–0.4 percent, and this agreement ensures the

propriety of this proposed analysis.
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VI. NORMAL MODE FORMULATION OF TRANSVERSE

FIELDS

The normal modes of the TE and TM transverse fields

are expressed by

for TE modes

eht = ixekx + iye~y

h~t = ixhkx + iyh~y (24a)

for TM modes

eet
= ixe,x + iyecy

her = ixh,x + iyhey (24b)

where the transmitting power is normalized as a unit value,

and ix and iy are the unit vectors in the x or y coordi-

nates, respectively. From (2), (10)–(14), (18), and (A16),

every component of the normal modes given in (24) can be

obtained as

for TE modes

(25a)

for TM modes

* Ylm” sinhylmx -
eel = h.yl = ‘I; = klm. coshyl~t . <~. sin klm y

~=1

1*
e,Y1 = — h,X1 = Al— ~

cosh ylmX .
. ~m. COS klm y

s ~ =1 coshyl~t

~ ‘Y2n” c0shY2n(a–x) -
e,X2 = heY2 = – Al; ~

k2.. sinhy2.h
.(.. sink2. y

~=1

~ sinhy2. (a–x) -
– Al; ~e,v2= —heX2— t.. cosk2. y

sinhyza h~=1

(25b)

where the suffixes 1 and 2 mean regions I and II, respec-

tively, and Al means the normalizing coefficient of the lth

mode.

In addition, the normal modes given by (25) are satisfied

with the orthogonal condition given by (26), which is

confirmed by numerical calculation

where etl and h ~r express the transverse electric field of the

lth mode and the transverse magnetic field of the l’th

mode, respectively, S. means a cross-sectional area of a

ridged waveguide, and A* means a complex conjugate

of A.

From (25), the transverse electric-field profiles of the

first four eigenmodes are obtained as shown in Fig. 4. The

arrow indicates the direction of the field vector and its

length is proportional to the logarithm of the field strength

at every point. In Fig. 4(d), the arrows in the second

column from the left do not seem to be smooth. This is

caused from the numerical error. Fig. 4 also illustrates how

mode transition occurs from a waveguide eigenmode to a

ridged waveguide eigenmode corresponding to the value of

s/b.

VII. GUIDE WAVELENGTH AND CHARACTERISTIC

IMPEDANCE OF DOMINANT MODE

A. Guide Wavelength

The guide wavelength Ag can generally be obtained

from the eigenvalue k= as

‘g=& (27)

where

A.= 2v/k~ cutoff wavelength

A. free-space wavelength.

For the TEIO Hybrid mode, the frequency dependent X ~ is

calculated from the value of k= in Table I and (27), and

the result is shown in Fig. 5, by using the WRJ-120

waveguide and 2t = 0.3 mm, s =1.7 mm. In Fig. 5, the

experimental values of A ~ obtained from the resonant

frequency of the slot resonator are shown together. These

experimental values have been corrected by the short-end

effect correction length Al of the short-ended ridged wave-

guide [15]. The theoretical values are in good agreement

with these experimental ones. From Fig. 5, it is evident that

the value of A ~ has a frequency dispersion.

B. Characteristic Impedance

The characteristic impedance ZC of the TEIO Hybrid

mode can be expressed by using the definition of [7]

Zc = v;/(2P)

J
Vy= ‘EY(O, y). dy

o

P = (1/2). Re ~~~a( EyH~ – EXH; ) .dx. dy (28)

where, VY means the gap voltage across the ridged wave-

guide at x = O, P the average transmitting power, and Re

means the real part. Substituting (2), (10)–(14), (18), and
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Fig. 4. Transverse electric-field profile of single-ridged waveguide eigenmode and its mode transition from rectangular

waveguide eigenmode (with a = b, t/a = 0.016). (a) TEIO Hybrid mode, (b) TEIO Trough mode, (c) TE30 Hybrid mode, and
(d) TMII Trough mode.

zt=o 3mm

m

*E
-E

o : Experimental values obtained
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Fig. 5. Frequency dependence of guide wavelength Ag of ‘1%10 Hybrid
mode (using WRJ-120 waveguide and 2 t = 0.3 mm, s = 1.7 mm).
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Fig. 6. Relation between relative characteristic impedance ZCm versus

s/b and t/a (with a = b).

where the relative characteristic impedance ZC@ is the

corresponding value of ZC at the infinitely high frequency.

From (29), the relation between Z=@ and sfb in the case

of a = b is calculated for several values of t/a, and is

shown in Fig. 6. In Fig. 6, as the value of s/’b increases to

one, the value of Zc~ becomes astringent to ~=

( = 377 0), the intrinsic impedance of free space. In the
case of a waveguide where 2a =19.0 mm, b = 8.55 mm,

2t = 0.3 mm, and s =1.7 mm, the frequency dependence of

Z= is obtained as shown in Fig. 7. The theoretical values of

[2], where b = 0.9a, are plotted by dots in Fig. 7. Both

theoretical values have a good agreement.

VIII. CONCLUSION

For the analysis of a ridged waveguide, a simplified

variational method has been proposed. By using this theo-

retical method, the eigenvalue formula, the normal mode

expression, the electric-field profile, the guide wavelength,

and the characteristic impedance of the dominant mode

can be obtained, and the fundamental design charts of a

ridged waveguide have been given. The correspondence

between the eigenmode of a ridged waveguide and the

original one of a rectangular waveguide were obtained.

And the normal mode expressions given in this paper will

be useful for the determination of several kinds of equiv-

alent circuits for discontinuities in a ridged waveguide.

APPENDIX I

PROOF OF STATIONARY CHARACTER OF (4) AND (5)

Equations (4a) and (5a) can be summarized in the fol-

lowing stationary formula:

i=l

In this Appendix, it should be proved that if @P,(i= 1, 2)

minimize (Al) with the constraints given by (4b) and (4c),

+19 mm+

● Theorebcal values taken from [2]

I
9 10 11 12 13 14 15

Frequency (GHz)

Fig. 7. Frequency dependence of characteristic impedance ZC of TEIO

Hybrid mode (with 2a= 19.0 mm, b = 8.55 mm, 2t = 0.3 mm, and

s =1.7 mm)

or (5b) and (5c), then they are the correct solutions of (1)

with proper boundary conditions.

When taking the positive sign in (Al), the following

relation can be obtained by letting $Pl vary a small amount

8+P,:
.

.

(A2)

By using the Green’s first identity in the fourth and fifth

terms of the &ht-hand side of (A2), (A2) can be trans-

formed into

2 2

&“ ~ (+;,)sl” %- = – ~ (~%z “ ( Vt%,, + khp,))sl

,=1 1=1

For the TE modes, if the tnial eigenfunction is selected to

satisfy the constraints on the conductor surfaces 12, 14, 15,

and 16 as shown in (4b), the second term of the right-hand

side of (A3) can be transformed into

(A4)

where (A)ll + !, signifies (A )1, + (A )[,. Then, if the trial

eigenfunction 1s also selected to satisfy the continuity con-
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TABLE III

STATIONARY CHARACTER OF (Al)

stationary formula

———

1-

stationary

condition

dition of the tangential component of the electric field as

shown in (4c), (A4) becomes

a&#hi ‘a~hl
“ —),1+($”(4,, - %2))[3.~ (@hi “ ~)C, = (@hi ax

i=l

(A5)

As the right-hand side of (A5) vanishes with the boundary

condition on the magnetic wall 11 and the continuity

condition on 13, the following relation can be obtained:

Therefore, (A3) becomes

(A6)

2 2

kT - z (@~i)s,.~kT = – ~ (d@hi” ( Vt%hi + k%hi))S,.

i=l j=l

(A7)

When t3kT = O, @hi are the correct solutions of (1) with the

above boundary conditions on II and 13.

Similarly for the TM modes, if the trial eigenfunction is

selected to satisfy the constraint condition on 11 and 13 in

Table III, the second term of the right-hand side of (A3)

vanishes as shown in (A8) by using the boundary condition

on the conductor surfaces lZ, 14, 15, and 16

(A8)

Therefore, (A3) becomes

kT” ; (@ji)S,”8kT = – ~ (a@ei” ( v~@ei + ‘~@ei))S, -

i=l i=l

(A9)

When 8k~ = O, 8ei are also the correct solutions of (1) with

the above boundary conditions on 12, 14, 15, and l&

TM

TE
4,1 = o on t,

A = o on 12,14, !?5 and 86

s eq. (4)

+ eq. (5)TM

!

In the case of taking the negative sign in (Al), the

following relation can be obtained:

2 2

For TM modes, the relation of (All) can be obtained

(All)

under the constraint conditions given by (5b) and (5c) and

the proper boundary conditions. For TE modes, the rela-

tion of (A12) can be obtained

(A12)

under the constraint conditions on II and 13 for the trial

eigenfunctions shown in Table III, and the proper boundary

conditions.

When i3kT = O in (A1O), @hi and $,i are the correct

solutions of (1) by using the relations of (All) and (A12),

respectively. The proof of the stationary character of (Al)

is completed for both TE and TM modes. These results are

summarized in Table III.

In order to use the known distribution functions .$(y)
and q(y) which are proportional to the tangential compo-

nents of the electric fielcl on 13 as the trial distribution

functions, (Al) with the positive sign is selected as the

variational expression for k$ in the case of the TE modes

as shown in (4) and Table III, and (Al) with the negative

sign is selected as the variational expression for k; in the

case of the TM modes as shown in (5) and Table 111.
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APPENDIX II

DERIVATION OF (8)

In (7a), let Oki vary a small amount, a parameter pl

- times an error function el plus a parameter pz times an

error function ez about its correct function +; i shown as

(A13)

where pl{ = pl(k~)} is a function of k;, and pl(k~)el is

corresponding to the error resulted from the difference

between k~ and its correct value ks, ad pl(k$’ ) = 0. On

the contrary, pze, is independent on kT, and is corre-

sponding to the error caused by the finite number termina-

tions (m and n) on the summations appeared in (10) and

(11).

From (7b) and (A13), F{ = F(kl, P2)} can be consid-

ered as a function of k; and p,, and then (7a) becomes

F(k:, p2) = o. (A14)

Equation (A14) constrains F to vanish; hence, as k; and

p, are varied [16], we have

6’F dF
‘8p2 = O (A15)~ ,#=k$’”s@+- 8p2 ~;= @’

p2=o P2=0

where k;’ signifies the correct value of k;.

The second term of this equation vanishes because F is

stationary about P1 = O (i.e., k$ = k~z) and P, = O for @hi

as described in Section III-B. The coefficient of the first

term is not, in general, zero; thus, the relation shown in (8)

is derived.

APPENDIX 111

FOURIER TRANSFORMS OF f(y)

The Fourier transform of ~(y) for k, ~ and k,. in

Nio, the Deputy Director, and Dr. K. Uenakada, the

Manager of the Radio Engineering Research Division, at

the NHK Technical Research Laboratories for their gui-

dances and many helpful discussions. He also wishes to

thank Dr. K. Oyamada and H. Matsumura of the same

laboratories for their helpful discussions.
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regions I and II are expressed by ~~ and ~., respectively, ~131

and given by

in=(t(y)” Cosk,my),,= ~ Cq”iqm
*=0

[14]

[15]

‘gqm={(nl+q)%’}-(1%1/6{(wr+q)97}

+{lm–qlT }-(1/’) .J1/6{lm–qlm} (A16a) “61

~.=(&(y). cosk,. y)~, =(t(y)” cosk2. Y)~,+~,

= ~ Cq.zqn
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~=()

:qn={(;n+4~)-(1’’)+’{(&+44

{1 1)
- (1/6)

~n–q7r
‘b {1.J1,6 in – q v1 } (A16b)

where JI,6 is the Bessel function of the first kind.
By substituting (A16a) and (A16b) into (21), (22), and

(23), eigenvalues can be obtained.
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