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Variational Analysis of Ridged Waveguide
Modes

YOZO UTSUMI, MEMBER, IEEE

Abstract — Brief expressions of eigenvalue problems, normal modes, and
electric-field profiles for all odd TE and TM modes of ridged waveguides,
and the guide wavelength and characteristic impedance for the TE,,
dominant mode, are presented in this paper.

In this analysis, the computation time can be reduced by getting simple
approximated variational expressions for eigenvalue equations by using a
trial function which satisfies the right-angled edge condition of a ridge.

These theoretical results are in good agreement with the experimental
results and the several references employed.

I. INTRODUCTION

PPLICATIONS of ridged waveguides have been of

wide-ranging use in microwave devices and circuits,
and research on them has been continued steadily. In 1947,
Cohn [1] obtained ridged waveguide eigenvalues of TE
modes by using the transverse resonance method in a cross
section of a ridged waveguide. Hopfer [2] and Pyle [3]
published further improved approximated analyses for ei-
genvalue problems of TE_, modes. In 1962, Getsinger [4]
first published approximated field equations of the TE,,
mode. Getsinger assumed the TEM mode under the gap
and made the matching condition only in electric fields. In
1971, Montgomery [5] published the complete solutions of
ridged waveguide eigenvalue problems for all TE and TM
modes. In this method, an eigenvalue equation was given in
a matrix form, and an integral eigenvalue equation was
subsequently solved numerically by application of the
Ritz—Galerkin method. In a recent paper, an approximated
closed-form expression for the eigenvalue problem of the
TE,, mode was published for concentrating on the reduc-
tion of computation time [6]. And also for the eigenvalue
problem of the finline, Schmidt and Itoh published the
spectrum-domain analysis [7], where the field at the top of
the fin was assumed as the near field of the 0° angle
conductor edge.

On the other hand, a planar circuit mounted in a wave-
guide (PCMW) was proposed by Konishi [8] as an effective
application of a ridged waveguide, and a 12-GHz band
low-noise down converter with a PCMW was developed
[9], [10] for satellite broadcasting by the NHK Technical
Research Laboratories. In the theoretical design of this
down converter, it becomes important to determine the
equivalent circuits of several discontinuities in a ridged
waveguide. Therefore, a theoretical analysis with short
computation time for eigenvalue problems and normal
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mode expressions including all TE and TM modes of a
ridged waveguide becomes important. It is impossible to
meet this requirement by using theoretical methods found
in [1]-{4] and [6]. Although Montgomery’s method [5] is
powerful and can meet this requirement in the main, it
cannot be regarded as an economical method in view of
computation time.

In this present paper, the near field of the edge of a ridge
is expressed by a known distribution function as described
in [7] in the case of a finline. In the case of a ridged
waveguide, as the thickness of the ridge is finite, the ridge
edge has a right angle different from the 0° angle of the
finline’s infinitely thin edge. And it becomes complicated
to use the spectrum-domain analysis of [7], because two
different spectrum domains exist on both sides of the edge.
In this paper, in selecting a trial function which satisfies
the edge condition of a ridge, the variational method [11] is
used in real space (x, y plane). By using the simple ap-
proximated eigenvalue equation, this analysis has met the
requirement, described above, of short computation time.
This paper also gives the normal mode expression and the
electric-field profile of each mode, the guide wavelength,
and the characteristic impedance for the dominant mode.
Finally, by comparing these theoretical results with experi-
mental ones and others [2}, [4], [5], the correctness of this
analysis is confirmed.

IL.

The cross-sectional shape of the ridged waveguide with
the coordinates is illustrated in Fig. 1, where 27 means the
thickness of the ridge, s the gap in the ridge, 2a X b
waveguide dimensions, I the region of 0 < x < ¢, and II the
region of < x < a. All ridged waveguide modes can be
classified into TE or TM modes, and these fields are
derivable from two kinds of scalar potentials ¥,, and
Vil(%, ¥, 2) = ¢,,(X, ) 8,,(2). ¢, is a function of only the
transverse coordinate. This potential function ¢,, satisfies a
wave equation

(1)

WAVE EQUATIONS AND BOUNDARY CONDITIONS

V2, + ki, =0
where
h: ¢, indicates magnetic scalar potential
= { e: ¢,; indicates electric scalar potential
_ 1: ¢, indicates scalar potential for region I
= { 2: ¢,, indicates scalar potential for region II

k2=k2— B2
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Fig. 1. Cross-sectional shape of a ridged waveguide with coordinates.

In (1), v2=09%/0x>+ 3*/dy> kr is a ridged wave-
guide eigenvalue, B is a propagation constant in the z
direction, and k the propagation constant in free space.

Two scalar potential functions are related to the electric
and magnetic fields of TE and TM modes by [12]:

for TE modes
Ett = iz X V,¢h,(X, y)
th = B/(‘*’Mo)‘vt¢hz(xa y)

H,, = ji.(B*—k§)/(wpo)éu(x,9)  (22)

for TM modes
Etz = _B/(weo)'vtd)ez(x’ y)
E. = ji,(B*—k§)/(weo) ¢u(x, »)

Htt = Vt¢et(x’ y) X iz (2b)

where g,,(z) is omitted, and i, is a unit vector of the z
direction, j=v—1, g, and p, are the permittivity and
permeability of free space, respectively, w is the angular
frequency, the suffix ¢ means the transverse direction
(x, ), and v,=i,(8/9,)+i,0/3,).

Considering the odd TE and TM modes whose symme-
try plane has been assumed as the y coordinate axis
(x = 0) in this analysis, the x = 0 plane can be regarded as
a magnetic wall. In the case of the even modes, a similar
analysis can be accomplished, regarding the x = 0 plane as
an electric wall. Therefore, in the following discussion, the
x = 0 plane is regarded as a magnetic wall and only a half
of the ridged waveguide (0 < x < a) is considered.

In Fig. 1, it is necessary to satisfy the boundary condi-
tions on the conductor surface and the magnetic wall for
both TE and TM modes:

Jor TE modes

a
—%’1 =0, on conductor surface
¢,, =0,  on magnetic wall (3a)

for TM modes

¢, =0, on conductor surface \
a
—(%1 =0, on magnetic wall (3b)

where n =i, n, the normal vector on each surface or wall as
shown in Fig,. 2.
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Fig. 2. Contour pass C, for integral representations in (6).

III. VARIATIONAL PRINCIPLE FOR EIGENVALUE
PROBLEMS
A. Stationary Formula

We have the following variational expressions for TE
modes:

2 5 2 8¢h1
IR IR Pp s, + IRCI an de,
k72-v=_ 1=1 > 1=1 (4&)
L (dh)s,
i=1

where the constraint conditions for the trial eigenfunction
¢,, are given by

a;:‘ =0, onl,, I, I5,and [

09, 09y, (“4b)
= o, —t(),  onk

g()’)=07 on 15 (40)

n(y) =0, on I, and I

where the trial distribution function §(y) and n(y) are
proportional to the y and z components of the electric
fields on /; and /s, respectively.

For TM modes

2 2 a¢
Z <¢ez'vtz¢et>s, - Z <¢et' 8},7 >C

1=1 i=1

1

k2=

5 (5a)
;’1 <<I>§,~>s,

where the constraint conditions for the trial eigenfunction
¢,, are given by

¢, =0, only, l,, Is,and I, (5b)
b= by =1(), on I (5¢)
n(y)=0, on /.

The relation between n(y) and £(y) is described later for
the TM modes. The integral {A4)s for the cross-sectional
area S, and the contour integral {(4). for the contour pass
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C, are defined as
(A)Sl=f0sf(:A-dx-dy
<A>sz=j(;bftaA-dx~dy
(e, = [[Alegrdy + [41,-p ds
+fSOA|x=,-dy+ftOA|y=o-dx
=fllA-dl+fle-d1+flaA-dz+/14A.d,
(D, = [Alewrdy+ [y
4 [ty et [Mmydr [A],
- (6)

In Appendlx I, we have proved that if ¢,; and ¢,
minimize (4a) and (5a) with the constraint conditions (4b)
and (4c), or (5b) and (5¢), respectively, then they are the
correct solutions of (1) with proper boundary conditions.

=— A dl—fA dl—

B. Trial Eigenfunction Including Eigenvalues

Equation (4a) can be transformed into
2

2
> (b Vi), + k7 2 (h)s,

=1 i=1
2
+ Z <¢h1 >C =0 (7&)
i=1

= left-hand side of (7a). (7b)

It can be proven easily that F given by (7b) 1s also
stationary for ¢,, from the stationary formula of (4a).

Next, we consider the cases of using the trial eigenfunc-
tion which includes the eigenvalue k, in order to obtain
the simplified stationary formula for the eigenvalue prob-
lem. When the trial eigenfunction is a function of the
eigenvalue k., the closed-form expression of k, cannot be
obtained from (7a). In such a case, k, is still stationary.
We will prove it as follows.

When the trial eigenfunction is a function of the eigen-
value k; and a parameter p, described as ¢,,(k;,, p,),
taking the first variations of k2 and p, in (7a), and using
the stationary character of (7b), the following relation is
derived in Appendix II as

3k2=0

where a parameter p, is described in Appendix II

Since the first variation of k2 vanishes, the value of k7
derived from (7a) is stationary. A similar expression for
TM modes can be derived from (5a) as

Z (e, %

i=1

a¢hl

(8)

c,=0.

(9)

Z <¢ez Vt ¢€I>S +k2 Z <¢el>S

i=1
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The left-hand side of (9) is also stationary for ¢,,.
IV. STATIONARY FORMULA FOR RIDGED
WAVEGUIDE

Applying the TE constraint conditions on /, and /, that
d¢,,/dn =0 and the TE boundary condition on /; that

¢, = 0, we find the trial eigenfunction in region I (0 < x <
t) to be
o0
= Z Ay’ SinhYImx' cos klmy (10)
m=0
where
m .
kip= 5 m:integer
O N

Applying the TE constraint conditions on l¢ that d¢,,/0n
=0, we also find the trial eigenfunction in region II
(t < x < a) that

= X by coshy (a =) coska,y (1)

where

S

nm

n b >
Y2n= Vk%n—k%

Similarly for TM modes, the trial eigenfunction ¢,, can be

selected as

k,

n:integer

o0

bq= 3. a,, coshy,,x-sink,,y (12)
m=1
o0
= Y b, sinhy,,(a—x)-sink,,y. (13)
n=1

And then we must consider the remaining constraints: the
constraint given by (4b) on only /5 and the constraint given
by (4c) on I, for TE modes. Therefore, the unknown
coefficients a,,, and b,, should be decided to satisfy these
constraint conditions. The unknown coefficients a,, and
b,, should be decided to satisfy the remaining constraints
for TM modes: the constraint given by (5b) on only /5 and
the constraint given by (5¢) on /;.

Substituting (10) and (11), or (12) and (13) into (4c) or
(5¢), and multiplying both members by cos k,,,,y orcos k,,, y
for TE modes, by sink,,,y or sink,,y for TM modes, and
then integrating from y =0 to s or b, the unknown coeffi-
cients are obtained by the orthogonal condition

(§ cosk 1mJ’>1

= m
Thm = T Ty coshygt
PR (§-cosky,y),

hn b y,, sinhy,,h
L o1 Sosinkiy),

em 5 coshy,,,t

-sink
b, = 1 (m i 2wV, (14)
b sinhy,,h
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where
h=a—1t
=1, €,(m>1)=¢,(n>1)=2.

Next, we should select the appropriate trial distribution
function £(y) which is proportional to the y component of
the electric field on /;. In the case of a ridged waveguide,
as the edge of the ridge has a right angle, the y component
of an electric field near the edge is approximately propor-
tional to Ay~ (/3 [13], where Ay means the distance
between an edge and an observational point. Therefore, by
using an arbitrary constant C,, £(») is given by

o0
Y. Cycosk,y-(s?—y

2)*(1/3)’ lyl<s
§(y)={ 4-0
0, ly|>s
(15)
where
k,= qs_'rr’ g :integer.

For TM modes, the trial distribution function 7(y) and
£(y) which are proportional to the z and y components of
the electric field on /5 can exhibit the relations 5 < ¢,, and
¢« d¢,, /3y by using (2b). And the following relation can
be obtained:

(16)

By using the partial integral
1 [pdn
k 1m
(17)

o dy
By substituting (16) and the relation n(s)=1(0)=0, the
following relations can be obtained:

<"7 - sin klmy>l3 =

. K
(n-sinky, Y= ?(g COS K1, V)1, (18a)

. K
(n-sink,, )’>13=E"<§‘C°Sk2nJ’>l3 (18b)

where K is an arbitrary constant.
When using (10), (11), and (14), and the constraint
conditions given by (4b) and (4c), (7a) becomes

(Dn €, —(bn2€),=0. (19)

Similarly for TM modes, the following relation is obtained:

a(pel (9(1)52
( Ox 'ﬂ>13—<_a‘x—‘77>13=0- (20)
The Fourier transforms of the trial distribution function
£(y) in regions I and II are defined as £, and £, respec-

tively, where 5 and & are given in Appendix III.

cosky - dy=(s)+1(0)).
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Substituting (10)-(14), (18), and (A16) into (19) and
(20), stationary eigenvalue formulas can be obtained

for TE modes

1 & tanhy,,t ., 1 &  cothy, h .
(21a)
= left-hand side of (21a)
(21b)
Jor TM modes
s i Y1 A0 Y1 E tanzlwlm’ B 4p Z Yz_n_‘io_ﬂ‘hl_gz
m=1 m n=1 n’
) (22a)
= left-hand side of (22a)
(22b)

where P, and P, are stationary for £, because they are
derived from the left-hand side of (7a) and (9), which are
stationary for ¢,, and ¢,,, respectively.

Considering only the comparative lower order modes in
the y coordinate, we retain the first three terms (i.e., ¢ < 2)
in (A16) for £,, and £,. Since P, given by (21b) is sta-
tionary for £, for the TE modes, letting C, =1, C; and C,
are obtained from (23a) by using the Rayleigh—Ritz proce-
dure [14]. Similarly, for the TM modes, letting C; =1, C,
and C, are obtained from (23b)

for TE modes

3P,/3C,=0, 9dP,/dC,=0 (23a)

for TM modes

dP,/3C,=0, dP,/dC,=0. (23b)

V. NUMERICAL RESULTS OF EIGENVALUE PROBLEMS

Montgomery defined two kinds of eigenmodes for the
double-ridged waveguide [5], i.e., Hybrid modes and Trough
modes. The Hybrid mode is considered to be a basic ridged
waveguide mode and the Trough mode is a rectangular
waveguide-type mode which exists in the trough region,
region II. These definitions are also used in this present
paper. TE and TM modes are further classified into TE
Hybrid, TE Trough, TM Hybrid, and TM Trough modes.

The eigenvalues of the transverse propagation constant
kr(=yk5— B?*) can be obtained from (21), (22), and (23)
by numerical calculation using the bisection method. In the
actual computations of (21) and (22), the summations over
m and n are terminated when m =20 and » =30 with
enough accuracy where examining the convergence of the*
variation of the eigenvalue as a function of m and n. For
example, by comparing the eigenvalues of this proposed
analysis with those of [5] for the double-ridged waveguide
shown in Table II, both eigenvalues exhibit a good agree-
ment within an error margin less than 0.6 percent for
m=20 and » =30, and less than 0.4 percent for m =50
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TABLE1
ODD-MODE EIGENVALUE K7 OF SINGLE-RIDGED WAVEGUIDE
AND CORRESPONDENT EIGENMODE OF RECTANGULAR WAVEGUIDE
(UsING WRI-120 WAVEGUIDE)

rectangular waveguide (2a> b) ridged waveguide (2axb,2ts)
a=b=9 5(mm) " a=b=9 5 1=015, s=1 7(mm)
mo rectangular
eigenvalue tran- elgenvalue waveguide
mode name [sitioni mode name {(bxh)
kr(rad /mm) krirad /mm) | eigenvalue
kr(rad /mm)
0 1653 TEwm —| TEy Hybrd 0 0830
0 3697 TEn — TEy Trough 0 3332 0 3307
0 3697 TMn >< TEso Hybrid 0 3881
0 4960 TEs TMi1 Trough 0 4665 0 4714
0 5962 TExn —! TE3 Hybrid 0 5265
0 6817 TE12 —| TE.o Trough 0 6654 0 6614
0 6817 TM;2 ><: TEse Hybrid 0 6913
0 8267 TEg TM12 Trough Q 7358 O 7490
0 8267 TEs —| TEz Trough 0 7456 0 7418
0 8267 TMs- ><: TEs1 Hybrid O 8298
0 8904 TEsy TMa2z Trough 0 9427 0 9429

and n = 200. The first eleven eigenvalues are obtained for
the single-ridged waveguide using a WRJ-120 waveguide
(2a=19.0 mm, b =9.5 mm) and 2¢ = 0.3 mm, s =1.7 mm,
which is the typical example of a PCMW in the 12-GHz-
band low-noise down converter [9], [10} for satellite broad-
casting. These results are shown in Table I. In this table, it
is evident that eigenvalues of Trough modes are almost
equal to those of a rectangular waveguide whose dimen-
sions are b X h. All eigenvalues of a ridged waveguide
originate from those of a rectangular waveguide with di-
mensions 2a X b as shown in Table I. When the value of s
increases to 9.5 mm, that is, the limit at which the ridge
vanishes, eigenvalues of a ridged waveguide are astringent
to those of a rectangular waveguide. These correspon-
dences are shown in Fig. 3.

For the first four modes shown in Table I, the relation
between the normalized eigenvalue, k;a and s/b in the
case of a=b with several values of the parameter ¢/a is
shown in Fig. 3. In the Hybrid mode, the energy is con-
centrated in the gap of the ridge. Therefore, by making the
value of s/b larger, the value of k,a becomes larger
because of the smoothing in the curvature of the magnetic
flux near the gap. In the Trough mode for a small gap, the
main part of its energy does not exist under the gap. By
varying the values of s/b and ¢/a, the value of kra is
constant with respect to s/b when s/b< 0.4, and this
confirms that ka is related to the b X h dimensions of the
rectangular waveguide only.

As the value of s/b increases to one, the limit value of
kra is astringent to the eigenvalue of the rectangular
wavegnide whose dimensions are 2a X b, as described
above. These transitions are explained later in Fig, 4.

For the TE,, Hybrid mode, by using Getsinger’s ap-
proximated field distributions [4], the eigenvalues can be
calculated by the variational method. These results plotted
by dots in Fig. 3 are in good agreement with the theoretical
values described in this paper.
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Fig. 3. Relation between normalized eigenvalue kra versus s/b and

t/a (with a = b).

TABLE II
ODD-MODE EIGENVALUE K7 OF DOUBLE-RIDGED WAVEGUIDE——.
COMPARISON BETWEEN THIS PROPOSED ANALYSIS AND THE ONE
Founp IN [5].

2% 2t =254mm
A I__I J 25 =2794mm
4 = ;
_1_ 2 dimensions
l taken from
reference [5]
kr{rad /mm) [ kq(rad /mm)
mode name !hxasng‘:/ess:m reference [5]
TE10 Hybrid 0 1438 0 1437
TE 10 Trough 0 3155 QO 3168
TEs Trough 0 6215 0 6190
TE3 Hybrid 0 6707 0 6712
TEn Trough 0 6971 0 6973

The eigenvalues of the double-ridged waveguide whose
dimensions are taken from [5] are obtained by using this
proposed analysis. The results are compared in Table II.
Both eigenvalues exhibit a good agreement within an error
margin of 0.07-0.4 percent, and this agreement ensures the
propriety of this proposed analysis.
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VI. NorMAaL MODE FORMULATION OF TRANSVERSE

FIeLDs

The normal modes of the TE and TM transverse fields
are expressed by

for TE modes

e, =re, + Lep,

hy,=ih, +ih,, (24a)
for TM modes

e,=ie, + iyeey

h,=ih, +ih, (24b)

where the transmitting power is normalized as a unit value,
and i, and i, are the unit vectors in the x or y coordi-
nates, respectively. From (2), (10)—(14), (18), and (A16),
every component of the normal modes given in (24) can be
obtained as

for TE modes

€haa =Py = A% mi; %ﬂ”% £ - sinky,, y

€= "hpa= Alflg mi:}ofm' %’ftﬁ gm cosky,, y

ehxa =y, =— A% él kznyjjsgzﬁlnii;: x) £ -sink,, y

€hy2= "Ry = A,% ni::oen. % .gn- cosk,,y
(25a)

for TM modes

€1 =hey = Al% = %% .gm' sinky,, y

o1 = —hoq= A% mi;l ﬁl—}%’:; £, -cosky,,y

Corz =heyp=— A% ,él ankionsl;ﬁﬁg:n; x) E sink,, y

€y =—h = % ;21 W -£,-cosk,,y
(25b)

where the suffixes 1 and 2 mean regions I and II, respec-
tively, and A, means the normalizing coefficient of the /th
mode.

In addition, the normal modes given by (25) are satisfied
with the orthogonal condition given by (26), which is
confirmed by numerical calculation

f_/;reﬁxh”,-izds=<(1): =0

[+

(26)
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where e,; and h,, express the transverse electric field of the
/th mode and the transverse magnetic field of the /’th
mode, respectively, S, means a cross-sectional area of a
ridged waveguide, and A* means a complex conjugate
of A.

From (25), the transverse electric-field profiles of the
first four eigenmodes are obtained as shown in Fig. 4. The
arrow indicates the direction of the field vector and its
length is proportional to the logarithm of the field strength
at every point. In Fig. 4(d), the arrows in the second
column from the left do not seem to be smooth. This is
caused from the numerical error. Fig. 4 also illustrates how
mode transition occurs from a waveguide eigenmode to a
ridged waveguide eigenmode corresponding to the value of

s/b.

VII. GUIDE WAVELENGTH AND CHARACTERISTIC

IMPEDANCE OF DOMINANT MODE

A. Guide Wavelength

The guide waveglength A, can generally be obtained
from the eigenvalue k. as

A

Vl_(}\o/)\c)z

A= (27)

where

A.=2a/k; cutoff wavelength

Ay free-space wavelength.

For the TE,, Hybrid mode, the frequency dependent A, is
calculated from the value of k; in Table I and (27), and
the result is shown in Fig. 5, by using the WRIJ-120
waveguide and 2¢=0.3 mm, s=1.7 mm. In Fig. 5, the
experimental values of A, obtained from the resonant
frequency of the slot resonator are shown together. These
experimental values have been corrected by the short-end
effect correction length A/ of the short-ended ridged wave-
guide [15]. The theoretical values are in good agreement
with these experimental ones. From Fig. 5, it is evident that
the value of A, has a frequency dispersion.

B. Characteristic Impedance

The characteristic impedance Z_ of the TE,, Hybrid
mode can be expressed by using the definition of [7]

z.=v?/(2P)
V= [ £, y)d

P=(1/2).Refbfa(Eny*._ExHy*).dx.dy (28)
0 Y0

where -V, means the gap voltage across the ridged wave-
guide at x =0, P the average transmitting power, and Re
means the real part. Substituting (2), (10)-(14), (18), and
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TE; Waveguide Mode TE3o Waveguide Mode TM,; Wavegude Mode

TE o Waveguide Mode
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Fig. 6. Relation between relative characteristic impedance Z,
s/b and t/a (with a = b).

versus

where the relative characteristic impedance Z, is the
corresponding value of Z, at the infinitely high frequency.

From (29), the relation between Z_ . and s /b in the case
of a=>b is calculated for several values of t/a, and is
shown in Fig. 6. In Fig. 6, as the value of s /b increases to
one, the value of Z,_  becomes astringent to /py/&,
(=377 Q), the intrinsic impedance of free space. In the
case of a waveguide where 2¢ =19.0 mm, b= 8.55 mm,
2¢ = 0.3 mm, and s =1.7 mm, the frequency dependence of
Z, is obtained as shown in Fig. 7. The theoretical values of
[2], where b= 0.9a, are plotted by dots in Fig. 7. Both
theoretical values have a good agreement.

VIIL

For the analysis of a ridged waveguide, a simplified
variational method has been proposed. By using this theo-
retical method, the eigenvalue formula, the normal mode
expression, the electric-field profile, the guide wavelength,
and the characteristic impedance of the dominant mode
can be obtained, and the fundamental design charts of a
ridged waveguide have been given. The correspondence
between the eigenmode of a ridged waveguide and the
original one of a rectangular waveguide were obtained.
And the normal mode expressions given in this paper will
be useful for the determination of several kinds of equiv-
alent circuits for discontinuities in a ridged waveguide.

CONCLUSION

APPENDIX I
PROOF OF STATIONARY CHARACTER OF (4) AND (5)

Equations (4a) and (5a) can be summarized in the fol-
lowing stationary formula:

2 2
¢’ :
X A6 Vi)t X A% 7, ),
k2= — = —= . (A1)
Z <¢;:>S,
i=1
In this Appendix, it should be proved that if ¢,, (i =1,2)

minimize (A1) with the constraints given by (4b) and (4c),
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Fig. 7. Frequency dependence of characteristic impedance Z, of TE,,
Hybrid mode (with 24=19.0 mm, »=8.55 mm, 2¢=0.3 mm, and
s=1.7 mm)

or (5b) and (5c), then they are the correct solutions of (1)
with proper boundary conditions.

When taking the positive sign in (Al), the following
relation can be obtained by letting ¢, vary a small amount

3,

2
2k Z <¢;i>s,'8kT

i=1

= ~2kT Z <¢pz 6¢p1>$

i=1

nMN

Z %

i=1

<8¢p1 vt <i)pt>S t28¢pz>S,
1

¢ 1 88¢ 1
23, - Z (i 520

HMM

( Oy,

(A2)

By using the Green’s first identity in the fourth and fifth
terms of the right-hand side of (A2), (A2) can be trans-
formed into

Z (86, ( V2, + k26, ))s,

1=1

2
kr- Z <¢;z>s,'8kr-

i=1

2 84) ,
Z Ve (A3)
For the TE modes, if the trial e1genfunct10n is selected to
satisfy the constraints on the conductor surfaces /,, /,, /s,
and /, as shown in (4b), the second term of the right-hand
side of (A3) can be transformed into

aa¢ , 35
E <¢h, h ¢h1

1=1

de, = bn’

>11+13 <h2 O >13
(A4)

where (A}, ., signifies (4), +({4),. Then, if the trial
eigenfunction is also selected to satisfy the continuity con-
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TABLE III
STATIONARY CHARACTER OF (Al)

[ o . B |

’ stationary ; constraint conditions
stationary formula condition mode for trlai elgenfuncnon
3 i
L gr: =0 on f,0,2 and £
eq.(4)
2 ) 2 i | 9% = Otz on 4, -
2 Vi ids; + 24y '7,?0; 2 200 v an gm
A I I 1 B e e e
Sad TR an 9601 -
=GRS o =0 on
™
Iger _ % on ¢
N~ on 3
e Be1 =0 on {4,
2 2 2 a¢px B = & on £
§‘<¢pl'vl¢pi>s 7%<¢p\ an >C ¢ el e2 3
K2 = Aiil,,f,\z, I T Z<§% >C:O . )
3 2
PALRET da =0  on Lla8s and ¢,
. ™ . = eq.(5)
“ Fo1 = o ON 43
P -

dition of the tangential component of the electric field as In the case of taking the negative sign in (Al), the
shown in (4c), (A4) becomes following relation can be obtained:

¢h1

2
98¢, 2 2
i O o T(E (P — ¢ X ‘
,;‘1 (it on > < m' 1 ( ( 51 h2)>l ko Z <¢;i>s,'8kT= - 2 <8‘#pi'(V12¢pi+k72~¢pi)>s,.
( A 5) i=1 i i=1
As the right-hand side of (AS) vanishes with the boundary : ¢> ;
condition on the magnetic wall /; and the continuity + Z (8" —~ >c,.- (A10)
condition on /;, the following relation can be obtained: =1 -
2 38, ‘ For TM modes, the relation of (All) can be obtained
PIRCIE W‘)q =0. - (A6) ‘ v
i=1 ! a¢e1
Z (89" 5 "¢, =0 (A11)

Therefore, (A3) becomes

2 2 | ) . ) .
ko S 2N\ Sk = — 8o, (2, + k26,.)).. under the constraint conditions given by (5b) and (5¢) and
T i§1<¢h'>si T , ,~§1< P ( “Pu T¢h1)>s" the proper boundary conditions. For TE modes, the rela-
(A7) tion of (A12) can be obtained
When 8k, =0, ¢,, are the correct solutions of (1) with the 22: (8¢ 3‘15 > -0 ' (A12)
above boundary conditions on /; and /;. i’ ¢

i=1

Similarly for the TM modes, if the trial eigenfunction is

selected to satisfy the constraint condition on /; and /5 in  under the constraint conditions on /; and I, for the trial

Table III, the second term of the right-hand side of (A3) eigenfunctions shown in Table I1I, and the proper boundary
vanishes as shown in (A8) by using the boundary condition = conditions.

on the conductor surfaces /5, 1y, I, and g When 8k, =0 in (A10), ¢,;, and ¢,; are the correct
2 8 ¢ , solutions of (1) by using the relations of (A1l) and (A12),

Y A L e = ¢, =0. (A8) respectively. The proof of the stationary character of (A1)

i=1 _ is completed for both TE and TM modes. These results are

summarized in Table ITI.

Therefore, (A3) becomes In order to use the known distribution functions &(y)

5 2 and m(y). which are proportional to the tangential compo-
kpe <¢§i>s,.'3kT= - Y (8¢, ( V b + kTqbe,)) nents of the elect‘nc‘ field on (3 as the‘ trial distribution
i=1 i=1 functions, (Al) with the positive sign is selected as the

(A9) variational expression for k2 in the case of the TE modes
as shown in (4) and Table 111, and (Al) with the negative
When 8k, = 0,8, are also the correct solutions of (1) with  sign is selected as the variational expression for k7 in the

the above boundary conditions on {,, /,, {5, and I,. case of the TM modes as shown in (5) and Table III.
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APPENDIX II
DERIVATION OF (8)

In (7a), let ¢,, vary a small amount, a parameter p;
-times an error function e; plus a parameter p, times an
error function e, about its correct function ¢f, shown as

by '=¢§zi+P1(k2)el+Pzez (A13)

where p,{ = p,(k%)} is a function of k%, and p,(k7)e; is
corresponding to the error resulted from the difference
between k, and its correct value k§, and pl(kcz) 0. On

the contrary, p,e, is independent on k;, and is corre-

sponding to the error caused by the finite number termina-
tions (m and n) on the summations appeared in (10) and
(11).

From (7b) and (A13), F{= F(k%, p,)} can be consid-
ered as a function of k% and p,, and then (7a) becomes

F(i2, p2) =0. (a9

Equation (A14) constrains F to vanish; hence, as k% and
p, are varied [16], we have

2 8kE+ —— )
SLCERNERE) 2% P P2
Py=0

=0 (A15)

where k& signifies the correct value of k7.

The second term of this equatlon vanlshes because F is
stationary about p, =0 (i.e., k7 = kT) and p, =0 for ¢,
as described in Section III-B. The coefficient of the first
term is not, in general, zero; thus, the relation shown in (8)
is derived.

APPENDIX II1
FOURIER TRANSFORMS OF £(y)

The Fourier transform of £(y) for k,,, and k,, i
regions I and II are expressed by £, and £,, respectwely,

and given by
<£(y) COSklm.y>13 Z C gqm
q=0

={(m+q)7} V0T, {(m+q)7}

+{lm_q|77}_(1/6)'-]1/6{|m“4|7’} (Al6a)
£n=<5()’)'COSkzn)’>13=<£()’)'C05kzn}’>13+15
= E" Cq'éqn
q=0
b= {(Grea)e} "l (o ale)
o) el

where Jy , is the Bessel function of the first kind.
By substituting (Aléa) and (Al6b) into (21), (22), and
(23), eigenvalues can be obtained.
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